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Abstract

This paper describes the development of a nonlinear dynamic model for
large oscillations of a robotic manipulator arm about a single joint. Optimi-
zation routines are formulated and implemented for the identification of
electrical and physical parameters from dynamic data taken from an industrial
robot arm. Special attention is given to difficulties caused by large sensi-
tivity of the model with respect to unknown parameters. Performance of the
parameter identification algorithm 1is improved by choosing a control input
that allows actuator emf to be included in an electro-mechanical model of the

manipulator system.
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1. TINTRODUCTION

The purpose of this research is to develop and investigate methods for
identifying parameters in a dynamic model of a robotic manipulator. Such
methods are important for determining models that serve as the basis for the
design of manipulators and of control algorithms for manipulators [2, 7, 8].
Because the parameter identification must be based on input and output data
from an assembled manipulator, which acts under gravity and has possibly com—
plicated joint friction, the dynamic model is a nonlinear differential equa-
tion, which must be solved numerically.

The approach used to date is to employ a nonlinear search routine to
minimize a quadratic fit-to-data criterion formed using the experimental data
and the solution to the model equation. This method has been applied to a
Unimation 600 Puma arm, with data obtained by F. W. Harrison in the Intel-
ligent Systems Robotics Laboratory at the NASA Langley Research Center.

Section 2 describes the mathematical model of the manipulator arm and the
parameters to be identified. Section 3 describes the parameter identification
scheme and the computer algorithms used. 1In Section 4, the experiment is dis-
cussed in more detail, along with some preliminary data reduction and analysis
of motor parameters.

In Section 5, we analyze the sensitivity of the manipulator model with
respect to small perturbations in parameters. The solution to the model equa-
tion 1is very sensitive to such perturbations when the input to the model is
the torque applied to the arm. In some parameter estimation problems, high
parameter sensitivity is desirable because it allows unknown parameters to be
estimated from noisy data. However, the experimental data that we have used

in this research has very little noise, and very high parameter sensitivity



repeatedly has prevented the search routine in our identification procedure
from converging.

Also, we should note that a model very sensitive to parameter variations
produces unreliable simulations, since the model parameters are impossible to
identify exactly and since some physical parameters in any manipulator can
vary with time., The analysis in Section 5 suggests both the cause and the
cure for the undesirably large parameter sensitivity. We reduce this sensi-
tivity by including the back electromotive force in the equation of motion for
the model and making the input the motor voltage rather than the torque ex-

erted on the arm.

In Section 6, we discuss the results of the parameter estimation routines
and derive values for electrical and mechanical model parameters that are con-

stant over the duration of our experiment,

2. MANTPULATOR MODEL

In the example in this paper, we attempt to identify inertia parameters
and joint damping for the robot shown in Figure 1. To minimize the number of
unknown parameters, we chose input/output data from an experiment with all
joints but the shoulder locked. The manipulator arm then is a rigid body
moving in a vertical plane, with the one degree of freedom. The equation of
motion for the model is

(2.1) 6 - mgrsind + h(8) = Nu(t)

To

where 6 =6, (see Figure 1) is the angle between the arm and the upward



vertical and u is the control torque supplied by the electric motor
(actuator) at the joint in question. The damping term h(8§) represents
friction in both the joint and the motor; I0 is the moment of inertia about
the appropriate joint, m 1is the mass of the arm, g is the acceleration of
gravity, and r 1is the distance from the joint axis to the arm”s center of
mass, and N 1is the gear ratio.

We will also use the following equations relating motor torque, motor

current (i), and motor terminal voltage (V)
(2.2) u=K1i
(2.3) Ri + KeNé =v

where Kt is the torque constant, R is the motor resistance, and K, 1is the
back emf constant. Equation (2.3) assumes the motor inductance is negli-
gible. The accuracy of these equations is discussed in Section 4.

The basic idea of the parameter identification scheme is to find

parameters for (2.1) so that tﬁe solution to this differential equation
matches the measured angle as closely as possible at the sampling times.
Because we cannot identify all of the parameters in (2.1) from the experiment
described, we must define a minimal set of parameters for this model.
Therefore, we rewrite (2.1) as

(2.4) o - « sin 8 + f(e,, cys §) = Bult)

2,



where a = mgr/IO, g = l/IO, and we have parameterized the damping term h(})
in (2.1) 88 f(c;, c,, 8).
In this paper we will use a piecewise linear, direction—dependent damping

model of the form

clé §>o0,

(2.5) £(8)

czé, 8 < 0.

Note that this model allows linear viscous damping as the special case
C; = €9 but allows the parameter estimator to check for asymmetry in the
damping parameters. Our best results have been obtained with this friction
model. A comparison of (2.5) with linear and quadratic damping may be found

in [3].

We will refer to the set of parameters in (2.2) by the parameter vector

(2.6) q=[a8B ¢, ¢ I

3. PARAMETER IDENTIFICATION
An experiment performed on a time interval [to tf] yields data wu(t,)
b

t

and y(ti), t; = to ot eee, where y(ty) is the joint angle

0 £’

measured from the vertical at time ti . We denote the measured angle (i.e.,
the data) by y(ti) to distinguish it from 8(t), the solution to the
model equation (2.1). For the data used here, the sampling rate was 30 Hertz,

so that

(3.1) t =t - t, = 1/30 sec.



With the known command torque u(t) and a set of trial parameters, we

solve (2.4) on the interval [to,tf] and form the fit-to-data criterion
(3.2) 3@ = ] [t - y(e1%

The parameter identification then consists of finding the parameter vector
q to minimize J(q). Usually, we take the initial time to > 1 sec.
because we suspect some error in the data near the beginning of the experiment
due to transients in electronics. Therefore, in some cases we know that the
initial angular velocity is zero, but in most cases we must estimate it using
finite differences obtained from the position measurement.

To solve (2.4), we use a fourth-order Runge-Kutta algorithm with variable
step size [5]. We tried using the numerical integrators DGEAR and DVERK in
the IMSL 1library, but both of these routines often hung up——i.e., the step
size was reduced to zero-—where the manipulator arm turned. This was espe-
cially troublesome for models with piecewise continuous damping and Coulomb
friction. The step-size control in our final Runge-Kutta routine does not
allow the step size to fall below a specified minimum.

For minimizing J(q) we used the subroutine ZXSSQ from the IMSL library,
which is a Levenberg-Marquardt algorithm [4] that approximates gradients by
finite differences. It also estimates the Hessian. Hence we assume certain
smoothness and local convexity of J(q) and the performance of the algorithm

indicates that these assumptions are valid.



4. DATA COLLECTION AND ANALYSIS

Experimental data was collected by F. W. Harrison in the Intelligent
Systems Robotics Laboratory (ISRL) at NASA Langley Research Center. The sub-
ject of the experiments was a UNIMATE PUMA industrial robot with six degrees
of freedom. A schematic [l] of the robot arm with rotational joints is shown
in Figure 1. The experiment described below was performed by rotating only
the shoulder (joint 2) with joint 1 fixed and all other joints locked in a
collinear position.

The purpose of this experiment was to gather input and output data for
dynamic models, The arm was initialized in a vertical, upright position and
then commanded to rotate about joint 2 with varying frequency and amplitude.
During this oscillation, 512 measurements of the joint angle in radians
(Figure 2), the motor current (Figure 3), and the motor terminal voltage
(Figure 4) were taken at a frequency of 30 Hertz. The motor current was
measured by the voltage drop across a known resistance. The angular velocity
of the arm calculated by central differences is shown in Figure 5.

A linear least-squares regression was performed to identify motor para-
meters and test the validity of motor equation (2.3) which assumes negligible
inductance. Regression identified the motor resistance as 2.59 ohms and the
back emf constant as 0.238 volts-sec after factoring out a gear ratio for
joint 2 of 107.8. The gear ratio was supplied by Don Soloway of ISRL. The
left and right-hand sides of equation (2.3) for these parameter values are
compared in Figure 6 where they show close agreement.

A static experiment had been earlier performed on joint 2 to test the
validity of equation (2.2) which assumes a linear relationship between motor

torque and motor current. The correlation coefficient was calculated as



0.999, This experiment and data are discussed in [3]. For this reason the
current data taken In this experiment was used as an accurate measurement of
motor torque after multiplying by the torque constant. Since in the units
used here the torque constant and back emf constant are numerically equal, we

used K, = +238 N-m/amp in equation (2.2).

5. SENSITIVITY ANALYSIS

We have found that the solution to (2.4) is very sensitive with respect
to small variations in the coefficients or the initial conditions when the in-
put u 1is the torque exerted by the motor. Figures 7 and 8 show the effect
on a solution to (2.4) of one percent pertubations in the parameters B
and cjy-

Tables 1A and 1B illustrate the effect of this high parameter sensitivity
on the parameter identification algorithm. The sensitivity has prevented us
from obtaining any reasonable fit to the data over the entire experiment. The
parameters for iteration 3 in Table 1A yield the best fit that we have found
for the data between 1 second and 6 seconds. The large variations in the mod-
el trajectory produced by small parameter variations lead to large and unpre-
dictable variations in the objective J. For this reason the numerical
optimization scheme can not be relied upon to locate good model parameters
even when they exist and lie close to the initial guess (compare Tables 1A and
1B).

To analyze the sensitivity of the model in Section 2, we let z(t) be
the partial derivative of B (t) with respect to one of the parameters

a, B, Cls Coe Then z(t) satisfies



(5.1) 2(£) = a,(£)2(t) + a,(£)&(e) = g(t)
where

(5.2) al(t) = a cosf(t),

and

s 8> o0,
(5.3) az(t) =

c 8 < 0.

29
The function g varies according to the parameter in question. For example,
if the parameter is c¢; then
-8, 8 >0,
(5.4) g(t) = .
0, e < 0.
The initial conditions are z(0) = O, z(0) = 0 and there is a jump in the
values of 2z and z at those points where 8 = o0, Since aj(t) is
positive for the experiment from which our data was obtained, we expect the
homogeneous solution to (5.1) to be unstable, so the sensitivity of a(t)
with respect to a small perturbation in ¢; should increase with t.
Since a;(t) varies relatively slowly during certain time intervals, it
should be relevant to consider the case for constant positive aj. The system

matrix for the left side of (5.1) is

0 1
A = ,
S



whose eigenvalues are
= (= 2 1/2
(5.6) s = ( a, * [a2 + 4a1] )/2.

As ag 1increases, the stable eigenvalue becomes more stable, and for suffi-
ciently large a5, the unstable eigenvalue approaches zero, though remaining
positive.

High sensitivity with respect to initial velocity is also a problem
because ‘we attempt to fit the data on an interval starting about one second
into the experiment and must approximate the initial angular velocity by a
finite difference. For the sensitivity of o(t) with respect to the ini-
tial value of 68(t), the sensitivity equation is (5.1) with g(t) = 0 and
z(0) = 0, z(0) = 1. The same discussion of stability applies, but here it is
interesting to note that the eigenvectors of A are [1 s1T. 1f as be-
comes large, not only does the unstable s become small, but the component
of [z(0) 2(0)]T along the unstable eigenvector approaches zero.

Sensitivity analysis, then, suggests that we might reduce the difficul-
ties caused by excessive sensitivity with respect to both unknown parameters
and 1initial angular velocity by increasing the damping in the model.
Fortunately, we can accomplish this by using the motor voltage instead of the
motor torque as the input in (2.1).

Solving for u(t) 1in equations (2.2) and (2.3) and substituting the
result into (2.1) has the effect of adding a damping term due to back emf to
the friction term. Using the damping model (2.5), the equation to be solved

for 6 becomes
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(5.7) 9 - asind + £(E), €y, 8) = By

2,

where (5.7) may be compared with (2.4) by the equations
(5.8) B = g /R

(5.9) ?:i =c, + BKKN/R, 1=1,2,

Al though much of this analysis rests on pretending that a time-varying
coefficient in the sensitivity equation 1s constant, we believe that it is
relevant because numerical results indicate that the solution to (5.7) is
indeed much less sensitive to small variations in both model parameters and
initial angular velocity. Figures 9 and 10 show the sensitivity of the solé—
tion to (5.7) with respect to small changes in B and El’ respec—
tively. The input v 1is the measured motor voltage in Figure 4. The values
of Zl and ZZ are much larger than in Figures 7 and 8 because they
include the back emf term as shown in (5.8) and (5.9).

The reduced parameter sensitivity that results from including the back
emf in the left side of (5.7) allows the search routine in our parameter iden—
tification algorithm to converge nicely from initial guesses corresponding to
those in Table 1 (see Table 2). We find it interesting that including a phys-
ical term a certain way in the model eliminates a numerical difficulty from

the parameter identification problem. The less sensitive model also yields

much more reliable simulations.
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6. FINAL PARAMETER IDENTIFICATION RESULTS

The iterative parameter estimation routine described in Section 3 was
applied to model (2.4) on the time interval [1.0, 6.0]. The results for two
similar initial guesses are given in Tables 1A and 1B. As shown in these
tables, the parameter estimation routine is unstable and the cost function
(3.2) may become quite large even for a good initial guess.

The results of the same routine for the desensitized model (5.7) with
input given in Figure 4 are given in Tables 2A and 2B, The initial guesses
were computed from the initial guesses for the corresponding Tables 1A and 1B
by equations (5.8) and (5.9) using motor parameter values obtained in Section
3. The procedure shows convergence to low cost values on the time interval
(1.0, 6.0].

Table 3 shows the results of an iterative procedure to obtain robust
parameter estimates over the entire experiment. This table shows the values
to which the estimation routine converged using successively longer time in-
tervals. The converged values were used as the initial guess for the follow-

ing interval., The optimal parameter values show little change between the

intervals [1.0, 11.0] and [1.0, 17.0]. This indicates that a model developed
with data on [1.0, 11.0] can predict the behavior of the system on [11.0,
17.0]. Figure 11 shows the fit-to-data of model (5.7) using the final param—
eter values in Table 3 over the interval [1.0, 17.0]. The graphs of model and
data are almost indistinguishable in this figure.

The overall electro—-mechanical model is reviewed in Table 4 along with
our best estimates of its parameters. The electrical parameters (R, K, Kt)
are those obtained in Section 3 from the data fit in Figure 6. The gear ratio

(N) was supplied by ISRL. The physical parameters (I, mgr, damping
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coefficients) were obtained from the values of a, B, El, and 32 given in
Figure 11. It should be noted that since the manipulator was not disassembled
for this experiment, these estimates are effective values for links 2 through
6 with an end-effector attached. These values will vary according to the type

of end-effector and payload.

7. CONCLUSION

Our experience indicates the importance of actuator effects in the devel-
opment of robust dynamic models for the motion of a robotic manipulator arm.
Including natural damping due to back emf improved the performance of both the
numerical integrator for solving the nonlinear equation of motion and the nu-
merical optimizer for estimating parameters. Among the friction models we
studied, the model allowing direction-dependent damping coefficients was the
most successful.

We did not include higher order actuator effects such as drive shaft
flexibility which have been found to be significant in some settings [6]. Our
results indicate that for this experiment, higher order actuator dynamics did
not improve the excellent fit-to-data results obtained with a simpler model.
In continuing research we plan to test the model over a variety of complex

motions of the robotic manipulator arm.
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Table 1A. Torque Input Model
Time Interval: 1 sec - 6 sec

iteration a B ¢y co J
*o 13.00 16.00 4.000 4.000 399.0
1 13.15 16.10 4.400 4.074 159.0
2 12.95 16.03 3.910 3.980 94.4
3 12,96 16.04  3.908 3.985 .227

Table 1B. Torque Input Model
Time Interval: 1 sec - 6 sec

iteration o B ¢ co J
0 14,00 16.00 4,000 4,000 754.0
1 19.25 9.89 16.38 -7.630 174.0 x 104
2 16.76 13.02 12.72 -8.580 630.0
3 14,25 16.45 14.54 -1.940 310.0 x 107
4 16.54 13.32 12.89 -0.950 600.0

*The iteration number 0 indicates parameters supplied to the identification

algorithm as starting values.
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Table 2A. Voltage Input Model

Time Interval:

iteration a

g

02

1 sec - 6 sec

~

1 )
0 13.00 1.470 41.71 41.71
1 11.21 1.500 41.40 41.93
2 11.71 1.700 47.46 48.37
Table 2B. Voltage Input Model
Time Interval: 1 sec - 6 sec
iteration o g c1 c2
0] 14.00 1.470 41.71 41.71
1 11.98 1.507 41,52 41,87
2 11.67 1.700 47,27 48,16

J

0.5800

0.0230

0.0057

J

1.4200

0.0410

0.0058

Table 3. Voltage Input Model Parameters Identified

on Increasing Time Intervals

interval a [ 31 32
sec - 6 sec 11.71 1.700 47,46 48.37
sec - 11 sec 14.84 1.746 48,36 48,15
sec — 13 sec 14,94 1.749 48,38 48.14
sec — 17 sec 14,94 1.749 48,38 48,14

J

0.0057

0.0290

0.0360

0.0470



Table 4.

Model equations:
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Ioe - mgrsind + h(ul, Hy s 8) = Nu

u =K

Ri + KN§ = v
e

De

ulé, >0
h(ul, Hyo 8) = o
u29, 6 <0

Parameter estimates based on the model parameters in Figures 6 and 11:

Parameter

o

mgr

*
not estimated

Parameter
Definition Estimate
effective moment of intertia 5.67 kg-m2
gravitational torque 84,76 N-m
viscous damping coefficient 19.65 N-m-sec
viscous damping coefficient 18.29 N-mrsec
motor resistance 2.588 ohms
torque constant 0.238 N-m/amp
back emf constant 0.238 wvolts—-sec
gear ratio 107.8*
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Figure 1. Robot arm with rotational joints [1].
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l.O_L JOINT 2, MEASURED POSITION (radians)
data taken at 30 Hertz
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Figure 2
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JOINT 2, MEASURED MOTOR CURRENT (amps)
data taken at 30 Hertz
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JOINT 2, MEASURED MOTOR VOLTAGE (volts)
data taken at 30 Hertz

Figure 4
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JOINT 2, ANGULAR VELOCITY (rad/sec)
1.54 computed by central difference at 30 Hertz
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JOINT 2, MOTOR PARAMETER ESTIMATION
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Figure 6.

T

solid curve -- modeled motor voltage in volts

model = 2.588*current + 25.68*(angular velocity)

dashed curve —-- measured motor voltage in volts
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JOINT 2, MOTOR TORQUE INPUT
PARAMETER SENSITIVITY (g)

-2.5

6.0 (sec)

Figure 7
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JOINT 2, MOTOR TORQUE INPUT
PARAMETER SENSITIVITY (cl)

Figure 8
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JOINT 2, COMMANDED VOLTAGE INPUT
PARAMETER SENSITIVITY (;)

! At
2.0\\\—///’ 4\3\‘/// \\\t,/9(0 (sec)

-2.5 |

- dashe solid

11.71 11,71
8 1,900 1.717
21 47.46 47.46
g2 48.37 48.37




-27-

1.5 JOINT 2, COMMANDED VOLTAGE INPUT
PARAMETER SENSITIVITY (&1)
1.0
0.5
2.0 4\8\’/// 640" (sec)
\/
-0.5
-1.0 |
-1.5
-2.0 "]
-2.5
-3.0 P dashed solid
~ 11.71 11.71
2 1700 1.700
Z1  47.46 47.93
3.5 c2 48.37 48.37

Figure 10
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JOINT 2, PHYSICAL PARAMETER ESTIMATION % = 14.94

1.01 MOTOR VOLTAGE INPUT 3 = 1.749
T1 = 48.38

T2 = 48.14

Figure 11. dashed curve —-- measured position in radians

solid curve -- modeled position in radianms
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